COLLOQUIUM 634
Multi-physics of fibrous networks and fibre-composite materials

19 June — 21 June 2023, Eindhoven, The Netherlands

Keynote lecture

Professor Gerhard A. Holzapfel will deliver a keynote lecture with a provisional title:

“Analysis of the Microstructure of Biological Fiber Networks: Experimental and Modeling Aspects”

Gerhard A. Holzapfel is Professor of Biomechanics and Head of the Institute of Biomechanics at Graz University of Technology (TUG), Austria, since 2007. He is also Adjunct Professor at the Norwegian University of Science and Technology (NTNU), Trondheim, Norway, and Visiting Professor at the University of Glasgow, Scotland. Until 2013 he was Professor of Biomechanics at the Royal Institute of Technology (KTH) in Stockholm, Sweden, for 9 years (7 years as an Adjunct Professor). After his PhD in Mechanical Engineering in Graz he received an Erwin-Schrödinger Scholarship for foreign countries to be a Visiting Scholar at Stanford University (1993-95). He achieved his Habilitation at TU Vienna in 1996 and received a START-Award in 1997, which is the most prestigious research award in Austria for young scientists. In the following years (1998-2004) he was the Head of a research group on "Computational Biomechanics" at TUG. Among several awards and honors in the past years he is listed in "The World's Most Influential Scientific Minds: 2014" (Thomas Reuters), he received the Erwin Schrödinger Prize 2011 from the Austrian Academy of Sciences for his lifetime achievements, and he was awarded the 2021 William Prager Medal and the 2021 Warner T. Koiter Medal.

Professor Holzapfel’s research includes experimental and computational biomechanics and mechanobiology with an emphasis on soft biological tissues, the cardiovascular system including blood vessels in health and disease, therapeutic interventions such as balloon angioplasty and stent implantation, polarized light and second-harmonic imaging microscopy, magnetic resonance imaging and medical image processing; nonlinear continuum mechanics, constitutive (multi-scale) modeling of solids at finite strains such as cross-linked actin networks, growth and remodeling, nonlinear finite element methods, fracture and material failure. His research has been supported by TUG, Austrian Science Fund, Austrian Academy of Sciences, State of Styria, Österreichische Nationalbank (Jubiläumsfonds), Austrian Exchange Service, KTH, Swedish Research Council, National Institutes of Health (NIH), The Royal Society, Carnegie Trust, European Commission and the private industry.